Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of China Pharmaceutical University ; (6): 607-613, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1003581

RESUMO

@#To investigate whether rare ginsenosides could alleviate idiopathic pulmonary fibrosis (IPF), C57BL/6 mice were randomly divided into control group, bleomycin (BLM)-induced IPF group, rare ginsenoside Rk1 group, rare ginsenoside Rk3 group, rare ginsenoside Rh4 group and rare ginsenoside Rg5 group.All mice except those in the control group were given bleomycin injection.The IPF model was established by BLM for 28 days.The treatment group was given ginsenoside intragastrically at the same time.After the experiment, the lung tissues of mice were collected and the pathological changes of the mice lungs were observed.The content of hydroxyproline (HYP) in mouse lung tissue was measured.The expression of IPF-related genes in mouse lung tissues was detected.In in vitro experiments, Medical Research Council cell strain-5 (MRC-5) was used to induce IPF cell model using transforming growth factor-β1 (10 ng/mL).The effects of four saponins on the expression of IPF-related genes were analyzed by MTT assay, HYP content determination and RT-qPCR.All four rare ginsenosides could effectively alleviate the pathological process such as alveolar structure destruction caused by IPF, reduce the content of HYP, and down-regulate the expression of IPF-related genes, indicating that rare ginsenosides can effectively alleviate IPF.

2.
Journal of Pharmaceutical Analysis ; (6): 463-482, 2023.
Artigo em Chinês | WPRIM | ID: wpr-991158

RESUMO

Hepatocellular carcinoma(HCC)is the third leading cause of cancer death worldwide.Ginsenoside Rk3,an important and rare saponin in heat-treated ginseng,is generated from Rg1 and has a smaller mo-lecular weight.However,the anti-HCC efficacy and mechanisms of ginsenoside Rk3 have not yet been characterized.Here,we investigated the mechanism by which ginsenoside Rk3,a tetracyclic triterpenoid rare ginsenoside,inhibits the growth of HCC.We first explored the possible potential targets of Rk3 through network pharmacology.Both in vitro(HepG2 and HCC-LM3 cells)and in vivo(primary liver cancer mice and HCC-LM3 subcutaneous tumor-bearing mice)studies revealed that Rk3 significantly inhibits the proliferation of HCC.Meanwhile,Rk3 blocked the cell cycle in HCC at the G1 phase and induced autophagy and apoptosis in HCC.Further proteomics and siRNA experiments showed that Rk3 regulates the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)pathway to inhibit HCC growth,which was validated by molecular docking and surface plasmon resonance.In conclusion,we report the discovery that ginsenoside Rk3 binds to PI3K/AKT and promotes autophagy and apoptosis in HCC.Our data strongly support the translation of ginsenoside Rk3 into novel PI3K/AKT-targeting ther-apeutics for HCC treatment with low toxic side effects.

3.
Chinese Journal of Biotechnology ; (12): 1590-1606, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771770

RESUMO

Panax ginseng is a traditional Chinese medicine with significant pharmaceutical effects and wide application. Through orientational modification and transformation of ginsenoside glycosyl, rare ginsenosides with high antitumor activities can be generated. Traditional chemical methods cannot be applied in clinic. because of extremely complex preparation technologies and very high cost Transformations using microorganisms and their enzymatic systems provide the most feasible methods for solving the main problems. At present, the key problems in enzymatic synthesis of ginsenosides include low specific enzyme activities, identity of enzymes involved in the enzymatic synthesis, and their catalytic mechanisms, as well as nonsystematic studies on structural bioinformatics; specificity of enzymatic hydrolysis for saponin glycosyl has been rarely studied. Many reviews have been reported on glycosidase molecular recognition, immobilization, and biotransformation in ionic liquids (ILs), whereas ginsenoside transformation and application have not been systematically studied. To evaluate theoretical and applied studies on ginsenoside-oriented biotransformation, by reviewing the latest developments in related fields and evaluating the widely applied biocatalytic strategy, this review aims to evaluate the ginsenoside-oriented transformation method with improved product specificity, increased biocatalytic efficiency, and industrial application prospect based on the designed transformations of enzyme and solvent engineering of ILs. Therefore, useful theoretical and experimental evidence can be obtained for the development of ginsenoside anticancer drugs, large-scale preparation, and clinical applications in cancer therapy.


Assuntos
Biocatálise , Ginsenosídeos , Glicosídeo Hidrolases , Panax , Saponinas
4.
Chinese Journal of Biotechnology ; (12): 672-682, 2017.
Artigo em Chinês | WPRIM | ID: wpr-310624

RESUMO

To improve collagen production by recombinant Pichia pastoris, we applied Placket-Burman and Box-Behnken design to optimize the fermentation medium. Through Placket-Burman design, three variables in the medium (concentration of yeast extract, peptone and glycerol) were selected for having significant effect on cell dry weight. Through Box-Behnken design regression coefficients analysis, a secondary degree polynomial equation was established, and the optimum levels of the three variables were yeast extract 1.13%, peptone 1.61% and glycerol 0.86%. During the growth period, an average cell dry weight of 4.41 g/L was obtained after 12 h fermentation, increased by 26%. Through high density fermentation, the production of recombinant human collagen (Ⅲ) was up to 4.71 g/L in 22 L fermentor. The recombinant human collagen (Ⅲ) exhibited good results to repair acetic acid induced gastric ulcer in rats.

5.
Journal of Pharmaceutical Analysis ; (6): 184-188, 2009.
Artigo em Chinês | WPRIM | ID: wpr-621655

RESUMO

Strains from the cellulose-containing environment were collected. Primary screening(by filter-paper Hutchison solid culture medium and sodium carboxymethylcellulose solid culture medium) and reelection(by filter-paper inorganic salt culture medium and sodium carboxymethylcellulosc Congo red coltnre medium) indicated that five strains obtained were best suited for high performance cellulose degradation. Determination of sodium carboxymethylcellulose activity(CMCA) and filter paper activity(FPA) was accomplished for each of the five. The strongest of the five in CMCA and FPA was applied to the production of cellulose bioethanol by separate hydrolysis and fermentation(SHF) and simultaneous saccharification and fermentation(SSF) respectively.

6.
Chinese Journal of Biotechnology ; (12): 591-598, 2009.
Artigo em Chinês | WPRIM | ID: wpr-286668

RESUMO

Human-like collagen (HLC) was cross-linked with hyaluronic acid by genipin in different ratio. The concentrations of hyaluronic acid in the mixture were 0, 0.01%, 0.05% and 0.1%. The blood vessel tubular grafts were then fabricated by freeze-drying. Microstructure, element composite, mechanical properties, cytotoxicity grade, and biocompatibility of different vascular scaffold groups were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), tensile test, burst pressure experiment, cytotoxicity experiment, endothelial cells planted in blood vessel scaffolds and hypodermic embedding of mice. The results showed that HLC-HA (0.05%) tubular scaffold exhibited interconnected well-distributed and porous structure and porosity of 94.38%; achieved the desirable mechanical property with stress of (1000.8 +/- 7.9) kPa and burst pressure of (1058.6 +/- 8.2) kPa, hypocytotoxicity, favourable cytocompatibility, hisocompatibility and disposition of degradation.


Assuntos
Animais , Humanos , Camundongos , Adesivos , Química , Materiais Biocompatíveis , Química , Materiais Biomiméticos , Química , Vasos Sanguíneos , Fisiologia , Colágeno , Química , Ácido Hialurônico , Química , Glicosídeos Iridoides , Iridoides , Química , Teste de Materiais , Engenharia Tecidual , Métodos , Alicerces Teciduais
7.
Chinese Journal of Biotechnology ; (12): 1225-1233, 2009.
Artigo em Chinês | WPRIM | ID: wpr-296934

RESUMO

In order to improve tensile property of vascular scaffold, we blended silk fibroin with novel human-like collagen with the mass ratio of 9:1, 7:3 and 5:5 (W/W), and then fabricated blood vessel tubular graft by freeze-drying process. We studied microstructure, mechanical properties, elements composites, degradability and biocompatibility of vascular scaffolds. These results showed that tubular scaffold with mass ratio 7:3 exhibited interconnected porous structure with pore size at (60 +/- 5) microm and porosity of 85%; achieved the desirable mechanical property (strain of 50% +/- 5% and stress of 332 +/- 16 kPa); had relatively slow degradation rate; could enhance cell adhesion and proliferation and had superior biocompatibility.


Assuntos
Humanos , Materiais Biocompatíveis , Química , Fenômenos Biomecânicos , Vasos Sanguíneos , Fisiologia , Colágeno , Química , Fibroínas , Química , Teste de Materiais , Porosidade , Engenharia Tecidual , Métodos , Alicerces Teciduais
8.
Microbiology ; (12)2008.
Artigo em Chinês | WPRIM | ID: wpr-595962

RESUMO

This research adopted silt as the sample,and the five highest hydrogen production performing strains contained in the sample were isolated. The strain whose hydrogen production was the highest was identified as Enterobacter cloacae by the analysis of 16S rDNA sequencing and comparison. It is showed by Plackett-Burman Experimental Design that only glucose,citric buffer and reducing agent had significant effects on hydrogen production by Enterobacter cloacae FML-C1. The path of steepest ascent was undertaken to approach the optimal response region of those three factors. Central Composite Design(CCD) and Response Surface Methodology(RSM) were employed to investigate the interaction of the variables and to ascertain the optimal values of the factors,which finally led to the maximum hydrogen production(VH2) . The theoretical optimal medium conditions were:glucose 21.5 g/L,citric buffer 13.6 mL/L,reducing agent10.0 mL/L. The five tentative tests matched this model well. The final VH2 was up to 2347.4 mL/L,which was 127.42% enhanced in comparison to the original. The result shows that PB experiment design and RSM analytical method work well in selecting factors which have significant influences on the hydrogen production and,moreover,achieve the ideal optimal result.

9.
Microbiology ; (12)1992.
Artigo em Chinês | WPRIM | ID: wpr-595073

RESUMO

To study and optimize the fermentation parameters for expressing human-like collagenⅡduring E. coli high-density fermentation. The effects of pH, temperature, dissolved oxygen and induction instant on the cell growth and human-like collagenⅡproduction were investigated to optimize the fermentation conditions. The results demonstrated that the following conditions were beneficial for cell growth and foreign gene expression, controlling pH in phase induction at 6.8 and initial pH at 6.5, maintaining fermentation temperature and dissolved oxygen concentration was controlled at 34?C and 20% respectively, and implementing induction at the later logarithmic growth phase. Under the optimized condition, the cell density and human-like collagenⅡyield could reach 88.4 g/L and 14.2 g/L, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA